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‘:14 ARSTRACT. Exact probability formulae are developed, with no restrictive
assumptions, for use with tests which produce data of the constant failure

Q ate type. Although universally valid, the formulae are particularly apropos

“L  when straitened test circumstances are dictated. Programming suqaestions are
included.

1. INTRODUCTION. This paper is a sequel to the one entitled £gtimating
Reliahilitu from Smll Samples and presented before the twenty-second
conference on the Design of Experiments in October 1976 [4].

The Poisson distribution fs treated in a manner parallel to that afforded
the hinomial distribution in the earlier paper.

2. DEFINITION OF ryrNT. Probability statistics require the
identification of a unit commonly called event or tmial. Often this
identification is self-evident. Suppose a test consists of drawing a sample
of specified size (n, say) from a larger population of similar items, then
determining the number of defective items (k) in the sample. It requires no
stretch of the imagination to say that drawing that sample of size n
constitutes an gpent Or ¢pial and that the failure ratio k/n is the pegult of
that event. It is to be noted that the failure ratio is dimensionless; i.e.,
k and n are measured in the same units.

Identification is not always so clear-cut. For example, suppose an
operator of heavy trucks notices that in the preceding six months, he has
experienced 13 major mechanical breakdowns--one every two weeks, on the
average. The definition of failume is obvious, but what is a guccess? To
what do we add k to get n, the sample size? The mathematical answer is that n
+ =», But this is also a useless answer; no realistic test design could
require an infinite sample size.

To avoid facing this dilemma, let us arbitrarily define event in some
convenient unit different from that in which k is expressed. As a
consequence, we no longer have a failure ratio. In its place we substitute a
failure rate--of k per event. Thus the failure rate depends upon an observed
k, but upon a defined event.
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To return to the truck operator, let us say that examination of the log

books reveals a total operating mileage of 267150 for the period in question.
This fiqure (267150 miles) {s taken as the definition of guent. The observed
failure rate then hecomes

X [fm_w_d"]’“':: = 0.0000486667 failures per mile.

It is sometimes reqarded as preferable to express the reciprocal of the
failure rate, calling it mean 1ife. Thus we would have

267150 miles
T TiTures 20550 mean miles between failures.

The term gpent can be defined in any of a variety of units--area, volume,
weight, time--almost anything that can be measured.

3. POISSON PROBABILITY. Consider the well-known series

- Y X w-0,1,2,3, . .0 (1)
kso 1K

This series converges for all finite values of x, provided only that x remains
constant., Multiplying by e=X produces

k ,-x
1 = X" e
T el

Poisson noted (1837) that if x is a constant failure rate and k is a non-
neqative integer, the probability of observina exactly k failures during an
event is given by the appropriate term of the above expansion; i.e., by

-X

(3)

k
p(k) = X_¢€
| k

This last expression, then is a probability function in the discrete variable
k. Unfortunately, however, it does not suffice. In most test designs, it
will be possible to define cvent arbitrarily and to observe the value of k
exactly, but nothing will be known about x. Usually, in fact, x will be the
principal value sought. A probability function in x is required.
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Now x can take on any non-negative value; i.e., it is a continuous
variahle within the 1imits 0 ¢ x < w. Necessarily

1 - 70 f(x) dx

defines f(x) as the required probability function in x, whatever form it may
take. With k fixed, the expression

xX e=X
|k

becomes a density function in x (though not necessarily a probability func-
tion). It is necessary to evaluate the definite integral

*®  k _-x
I =! L—L—dx
k 0 IE

Since k is constant, Ii can be taken outside the intearal sign, leaving

k1 =[] xKkeXdx=p (k+1)
-k 0

but also, k is an integer, hence |k =r (k + 1).
It is seen that I = 1, and therefore that

k -X
f(x) = 2—€_

Ik |

is the required probability function in the continuous variable x.
It is helpful to inspect qraphs of the probability function

f(x) =Lk__ﬁi (4)

K

Sever al are depicted in Fiqure 1 for various integer values of k. Among
features which should be noted are the following:

1) When k = 0, the function degenerates to
f(x) = e™X (5)

and is most easily treated as a separate case.
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?2) f-(x) = -}- [kxk'l N xk} : x——l—i—i (k - x) (6)

Thus a maximum occurs when x = k,

3) £ (x) = LTTZ-L—" = {k(k-1) - 2kx + x2 (7)

A point of inflection is found whenever

x2 - 2kx + k(k - 1) = 0,

i.e., when x = k ¢+ J/k. For some proaramming purposes, when k = 1, the origin
may serve as the missing point of inflection., The slope there is unity,

4) Every curve crosses every other curve exactly once, and in
consecutive order.

5) Two consecutive curves intersect at the maximum point of the
second, since the only non-trivial solution of

K kel
occurs when x = k + 1.

4, TRANSFORMING THE PROBABILITY FUNCTION. If the case k = 0 is treated

separately, the transformaticn w = x/k suaaests itself, Lletting x = kw,
dx = kdw and it is seen that

k _-kw
! {kw)™ e”"" kdw = 1,
kw=0 IK

since merely employing the transformation will not affect the value of this
definite integral. Rut the probability function in w is

glw) = kﬁLE%ELKuﬁi (8)

Basically, this transformation rescales the abscissae by 1/k, and hence
the densities (ordinates) by k, thereby preserving area. Several graphs of
this function are shown in Figure 2. Notice that every curve has its maximum

point at w = 1. Also, w + 1. Points of inflection occur at 1 + 1//k.
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Althouah the transformation is useful for studying this family of
functions, it matters very little whether levels of confidence are computed
from

z z2/k
| f(x) dx or [ g9(w) dw.
X=0 w=0

In this paper, the form in f(x) will be used.

5. INTEGRATION BY PARTS, When a function is defined by (or can be
described as) a definite intearal, very frequently it will bhe found that
repeated integration by parts will produce an expansion suitable for
computina. In fact, as in the instance at hand, it may be possible to expand
in either ascending or descending factorials (or powers, as the case may be),
thereby producina two different expansions, both of which are valid. Usually,
one will appear in the familiar form of a power series which converges more
rapidly for smaller values of the arqument. The other will be the associated
asymptotic expansion. If the parameter which appears in the factorial part of
the probability function can be restricted to integer values only, the asymp-
totic expansion becomes finite in length and is an exact expression.

The sought probability inteqral can be stated

z 4 K _-x
P(z) = [ f(x) dx = | &I—kﬁ-— dx (9)
X=0 X=0 Sl

and gives the probability that x does not exceed the (perhaps arbitrary) value
zt

k o-X
Can the indefinite inteqral f 5—Tf—- dx be evaluated by parts, k being a

fixed, positive integer?

. k
Let u =e™ and dv = 5; dr.
k+1
Then du = -e~Xdx and v = &—,
lk + 1
K o-X -x  k+l -x  k+l
K kel kel

It is apparent at once that the second integral is like the first, save k
has been auamented by unity. It is clear that the process can be reapplied
ondlessly, yielding

K o- -x 4k + i
[ e = Y exX xk L (i=1,2,3...).
Ik i=1 |k + 1
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Passing to the lower limit of the definite intearal (x = 0), the sum vanishes,

since x factors every term, (It may he more correct to say that the sum
reduces to the constant of integration.,)} Thus

k o o2 ket
P(z)=]5—g—dx=2—z—:

' (10)
xz0 X

The term-to-term recurrence ratio is z/(k + i).
(k + 1) increases without bhound
positive values of z.

Since 2z is constant while
» the series will (eventually) converqge for all

k
Now let u = ?; and dv = e *dx. Then

k-1 k-1
du = ka dx = ': 1 dx and v = -e”X, whence
k -X k k-1
! X € 4x = o™X X f dx
Ik Ik lk_-

Noting that -e”* will factor every term, we can write the result in the form

k _-x
IX_g_dx-

A Rer \x_ x2
Ik F 1k

‘- :
k- +...+—+x+l'~

LI 2 )

At the lower limit (x = 0), the right-hand member becomes

)

The definite integral thus is aiven by

k k-1
P(z2) = I 5——£——-dx =]l -eZ ) vl 4 24 lt (11)
fk fk -1 \
Are the two solutlons equivalent? Is it true that

k- K
:1-e'z}1+z+%+,,,+zl i
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Multiplyina by eZ and transposina, it is seen that

1*29..'+z—k-¢.zk*‘ -ez
L I ) G L

is the well-known Maclaurin series for eZ, Therefore the two solutions are
indeed equivalent,

It is a fact that if the upper limit of inteqration he taken at the
maximum (w = 1; i.e., z = k), the leve! of confidence will always be less than
1/? and hence of little statistical interest. (See Table 1.) However, the
araument 7 = k has an important use of a different sort. [t enables us to
select a series for computing whose terms are known to decrease monotonically.
This results in worthwhile economy for larger values of k. There are two
cases to consider.

First: (et 0 < z ¢ k. The series

p-2gk+i

T oIk + i (10)

P(z) ‘2

is chosen for use. Obviously, the term-to-term recurrence ratio is given by
z/(k + i). Under the stated conditions, this is always less than unity.

Second: Let 2 > k. The formula

-7 (,k k-1
P(z) =1 -¢ \5——-+ 4 ...+ 22 + 72+ 1] (11)
Ik 1k -1 2
is used. The recurrence ratio is
k+1 -1 (5-1,2, 3, , k)

which again is less than unity. For larqe values of k, the interior series
can be summed as though it were an infinite series, thus achieving a laudable
saving in the number of terms required.

f. COMPUTING A LEVEL OF ~ONFIDENCE (z > k). The value of z may be
derived from any source, or 't may be arbitrarily specified. The proper
formula, as we have seen, is

P(z) =1 - o7 X + 2k + .. . +2+1
k Ik -1
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TABLE 1
CONF IDENCE LEVEL AT MAXIMUM ORDINATE

' k
k f(x) dx
]o (x)

0 0.000000

1 0.264241

2 0.323324

3 0.352768

4 0.371163

5 0.384039

6 0.393697

7 0.401286

8 0.407453

9 0.412592
10 0.416960
12 0.424035
15 0.431910
20 0.440907
30 0.451648
50 0.462483
100 0.473438
200 0.481206
400 0.48670A
1000 0.491591
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When k is sma'r (k < 12, say), the resulting finite expression submits
vasily to direct computation. But when k is very large, two difficulties
arise,

First: The number of terms becomes excessive. If the series is
summed as though it were an infinite series--i.e., the relative size of each
new term is observed--the process can he truncated when additional terms no
longer affect the result in the computer,

Second: Large factorials will overflow the computer. To circumvent

this, the first term of the series is computed by logarithms. Stirling's
formula (k > 11) is given by

1
In Ik = 0.91893 85332 + (k + -2-) In &

e - e
_ko_}_ ‘ -._1-,_ (1 - ﬂ (
12k I 30k 7K/ (12)
e ? 2

The first term is (disregarding sign) ; hence, 1ts logarithm will be

hIngz - 2 - In |k, which should not cause overflow within the range of useful

numbers,

7. COMPUTING z WHEN A LEVEL OF CONFIDENCE IS SPECIFIED. (L = P(z) » 0.5)
No new formula is available for the iTnverse. Tnstead, successive approximations
24, 21, 27, . . . are computed until a steady state is reached. Newton's
method serves very well, See the discussion in [4] pp. 279-280.

For any z;, compute P(z;), f(z;) and f°(z;). The required incremen-
tal area 's of course Pz ) - Pzzi). We approximate this area with a
trapezoid of width Az whose ordinates are f(z;) and f(z;) + Asf° (za).

We have seen carlier that the first term of the wanted series for (zi) is
-2; k
e '
I
“Zj 2.k
Also f(z ) =& —"1;
i IE
and f~ {——— - 1} f(z

.85




fa,) (}
\- 'Q’VWAAL
.P(‘:;] \i
” /’/ \*.\‘\\\
S
s S f(?.;) ~Naz f(z)
A
#
/ //
Lod Ll B8E |
EL
A F'uju’\rle. 4

Best Estimate of
the Failure Rate

|
|

|
| |

|.

186 S

O}
e
F




r—r-—-;______ : =

————

The approximatina trapezoid is qiven by
"(2) - Plzy) = az {f(z)) + A2 f<(zy)}

which can be solved for az.

Az s -f(z2y) ¢ '/[f(zi)]z+ 2f-(z3) [P(2) - P(z3)]

f‘(li)

Since ultimately az » 0, it is apparent that the positive square root yields
the true <olution, Noting that

f(Zi) : 7i
f‘(z‘-) k - Z"

the formula can be simplified to

2
.t ‘/(—L—) R )

Zi'k Zi -k f‘(Z,)

The process is stable when started from the right-hand point of inflection;
i.e.,

2. =k ¢+ /f_ (14)

0

#. THE BEST ESTIMATE OF THE FAILURE RATE.* For a specified level of
confidence |, the general solution of the probability integral is

3
L = £ f(x) dx.

There are, of course, an unlimited number of solution pairs (a, s) which
satisfy this equation, llp to this point, we have concerned ourselves with the
case a = o, This form properly is used to test for compliance with an imposed
standard.

Somet imes, however, that standard is absent, unrealistic, or even
erroneous. Put it is still required to make a meaningful statement about the
fiilure rate. In this situation, the Reat Fatimte is recommended.
Fssentially, that solution pair (a, s) is chosen which minimizes the
difference | s - al.

*See [4] pp. 267-2/0,
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Values of a and s thus determined are desigqnated by a tilde (a, s).
Some properties of the Best Estimate of the Failure Rate are:

a. S - a is minimum, by definition.

b, The limits of integration lie on opposite sides of the maximum;
i.P.,a<k<S

c. The ordinates at a and s are equal; i.e, f(a) = f(s).
d. The solution is unique.

There are several steps in the solution,
Step One. For any s;, compute f(s;), f-(sy), P(sy).

= k + /E_)

Step Two. For each s;, solve for the value a < k such that f(a) = f(s,).

(To beqin, set s,

For any 3y compute f(a;) and f'{aj).

Then

L fsy) - flay)
f‘(aj)

The process is repeated until f(a) and hence a is found to the desired
accuracy. This value of f(a) is then associated with f(s;) by appending the
subscript ;. (The subscript ; is dropped, being no longer necessary.) For
every new value of s,, the a-process is bequn afresh by setting

dj=k-/-k-.

(15)

Step Three. The value f(a;) = f(s;) having been found, compute
P(aj). (The values for a; and } (3;) w!ll already have been computed.)

The desired incremental area is L - P(si) + P(ai)

Step Four. The incremental area always will appear in two separate
parts. The ratio of these areas can be estimated quite closely by the slopes.

Thus
fl
6 - P(b;) + P(ai» (~f'(ai;aj)f‘(si;)

will appear on the right. It is convenient to express the ratio in terms of
the ordinates.
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f’(ai) (k-_al f(di)
f(a;) - f(sy) (k - ‘l) flay) - (k_it) fsy)
S

But since fl(a;) = f(si). this value can be cancelled from numerator and
denominator, leaving

f’(ai) Si(k - ai)

f'(ai) - f‘(Si) . k(si - ai)' (16)

Thus a suitable approximating trapezoid is given by

(L - P(sy) * P(a,) (Ez—i:-%;)) - as {fls) + = f2(s)) (1)

which can be solved for As by the method of Section 7, above.

9, EXPRESSING RESULTS IN TERMS OF MEAN LIFE. It should be noted that
the methods developed in this paper are virtually independent of the
definition of Event, (Event often will be synonymous with Duration of Test.)
Suitable values of a and s (or z, as the case may be) havina been found, it is
apparent that they should be expressed in the units failurea per event, If at
this point the definition of event is imposed, the results can be expressed in
failures per mile or failures per hour or whatever.

Now the simple reciprocal converts to mean life, It should be remembered
that taking the reciprocal reverses the sense of inequality signs,
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APPENDIX A

o o

CHI-SQUARE AND OTHER POISSON-RELATED FUNCTIONS

Let us define the following special functions:

Incomplete exponential function:

n
e (x)=14+x+ &, R
n 12 In
The series consists of n + 1 terms,
Gamma function:
L] -t X-l
r(x) = ]0 e t dt (x > o)
- -t X

Thus p(x + 1) = ]o e t dt.

Incomplete qamma function:

Z  _t x-l
v(x,2) = [ e t dt (x > o)
0
and, of course, 0 < Z € =,
Prym's function:
o -t x-1
r(x,z) = fe t dt (z > o)
2

Immediately it is seen that
v(x,2) + r(x,2) = r(x)

and that dividing both sides of this equation by r(x) will produce a
probability relationship.

Thus we can state

_ Y(X.Z) _ P(X.Z)
P T T oo
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Now for any particular problem, x and hence r(x) will remain fixed. In terms
of Prym's function we can write

]l & -t x-l
P(x,2) =1 - FT;7 { e t dt.

It is easy to develop r(x,z), using repeated inteqration by parts.* [t is
found that

x-1 (x = 1) (x=-=2) ... (x-5)

-2 -
rix,2) ~e 2z}
$20 2%

is a valid asymptotic expansion for fixed x and large z.

When x is an integer, the series terminates.

When x is not an integer, the terms of the series alternate in siqgn after
s > x. The series diverges after s > x + 2,

Let us replace x with k in the formulae in order that x can be employed
as a varizhle of intearation. Thus the formulae restated appear as follows:

P(k,2) = 1 - Kﬁ%tfl “ 1 - = [e (2))

Plkoz) =1 -2 20Kk - k-2 L L ke )
’ r(k) g0 25

When k is a positive integer.

This case of k being a positive integer was studied at length in its
application to samplina distributions by Helmert (1876) and K. Pearson (1900).
Thus arose the statistics of the y2 distribution. The exponent 2 in y2 has
little significance beyond ensuring that the parameter is non-neqgative.

*See [3] p. 66.
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Thelx2 probability function* is defined by:

2
] X
2v/2 p(yr2) O

0(x2lv) = N fz (t)(v/2)-1 o-t/2 4
2912 ¢(y/2) X

P(x2lv) + Qlx2iv) =1

Comparing this to the earlier-derived

Y(k.Z) _ 1 z -x k-1
) o) X{O e’ x"°% dx,

it is seen that the only differences are in the scaling of the parameters.
For let v = 2k. Then

P(k,z) =

1 X2 k1 -2
t e dt

2kp(x) O

1 X (t)k'l 1 -t/Z)
o 1o 2 (Ee at

n Now let t = 2x, from which dt = 2dx. Replacing the variable of integration,

P(x2]2k)

1 2x=y2 .1 -x
] X e dx
r(x) 9x=0

P(y2|2k) =
F and it is seen that y2 = 2z properly scales the limit of integration.

When v = 2k is an ODD integer, two things happen. r(k) contains the

o (k-1)(k-2)...(k-5s)
factor yw and { does not terminate. The

$=0 25

behavior (accuracy) of the asymptotic expansion near z = k - s must be
investigated.

*See 11 26.4 paae 940.
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APPENDIX R

PROGRAM PLANNING - POISSON

1. INTRODUCTION. As a general rule, the only variable of observation
will Be k, the number of failures. The variable of inteqration will be x,

with z one of its extreme values (limits of inteqgration).

It is necessary to define cvent in some suitable unit (time, distance,
mass, volume, etc.); e.q., event = 4240 hours., Fuvent often is synonymous with
Duration of Teat,

Many formulae of interest are agreatly simplified if expressed as
functions of f(x) or of f(z). Thus

-x k
X

X

fe(x) = (% - ) f(x)

fr(x) = (&i_;_K - 2k *) f(x)
x2 X

e
f(x) - -

- -7 k+i
p(Z) = Z £ z (‘ = 1, (IRRCIS )
i=] lk*1
=T + T +T7T_ + + T +
2 i
T =1L f(z) and
Ik +
T =27
j o ok+i j-l
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Also, 1-Pl2) =T +T7T +7T + .. .+T +,
. .

0 2 i
T = f(z2)
0
T =k=Jy
j+l z J

This latter series terminates when k = j.
For larae values of z, compute f(z) by logarithms.
Ing f(z) = k Ingz - z - 1ne|£
Stirling's formula for lneli'is useful here. If k does not chanae, it need be
computed but once.

2. COMPUTING L (z specified). Fquations (4), (5), (9), (10) and (11).

Enter data

ves
—————5 subroutine for zero failures

Compute 1ne k. (If k > 15, use Stirlina's formula.)

Compute k In 2z - z.
e

k -2z
Compute f(z) = 2—& =T
| k 0

b
Compute L = jo f(x) dx from one of the methods in the previous paraqgraph.

-z k+i
If Kk >15 and z < k, use L = e -z
o =1 IEE
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3. COMPUTING z (L specified). To the above, add equations (6), (7) and
(13).

Enter data
yes
———— subroutine for zero failures
no

Subsequent portion of method assumes L > %

Assign 2, = k +/k
Label B
z

)
Apply method of paragraph 2 above to compute L = [ f(x) dx
) )

Compute f‘(zo) = (—k— - 1) f(zo) and
z
0

Assign z = 2;+ AZ
i+l

Return to LaLel ,
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4. COMPUTING BrST FSTIMATE OF THE FAILURE RATE (L specified.)

Enter data

yes
Employ paragraph 3, above.
no

Assign s =k + /k
0

Label

S .
i

Compute [ f(x) dx by method of paraaraph 2 above.
0

55

Compute f~ = (5—-- ) fis;)

yes » assian a = f(s;)
0

L—————-» assian a = k - /k
0
Label

Compute f(aj) and f'(aj)

f(Si) - f(aj)
f‘(aj)

Compute aa =

Compute and store a. 1 = a;

+ j &
J .
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no » Return to Label Eﬂ

a

i
Compute [ f(x) dx by methods of paragraph 2 above.
0

a - e-a ak+i
If k > 15, f(x) dx = e
( Jo 1) izl LS ]
The needed increment of area is
S a

A=L - ]; f(x) dx + f; f(x) dx

The approximating trapezoid yields (momentarily droppina subscripts for
convenience)

L2k -a) (k-s) A }
k(s - a) " f(s)

S. =S.+AS
i+l i

Return to Label

197



S———

.y

B1BL10GRAPHY
[11 Abramowitz, M. and Steaun, 1. A., Eds., HANDBOOK OF MATHEMATICAL
FUNCTIONS; Dover Publications, Inc,, New York, 1972,

[?2} Boole, G., THE CALCULUS OF FINITE DIFFERENCES; 5th Ed., Chelsea
Puhtishing Co., New York, 1970,

[3] Olver, F. W, J., ASYMPTOTICS AND SPECIAL FUNCTIONS; Academic Press,
New York, 1974,

[4] Rankin, D, W., ESTIMATING RELIABILITY FROM SMALL SAMPLES; in Proc.
22nd Cont, on D,0FE, in Army R.D,&T,., Department of Defense, 1977.

[6] Whittaker, £. T. and Watson G. N., A COURSE OF MODERN ANALYSIS; 4th
Ed., Cambridge University Press, 1963,




